Source code for agentopera.router.workers.onchain_trend_agent

import json
import os
from typing import Dict, List

import requests
from agentopera.engine.types.msg_context import MessageContext
from agentopera.engine.agent import message_handler
from agentopera.models.openai import OpenAIChatCompletionClient
from agentopera.chatflow.agents import AssistantAgent
from agentopera.chatflow.messages import TextMessage
from agentopera.engine.agent.routed_agent import RoutedAgent
from agentopera.engine.types.models import ModelInfo
from agentopera.engine.types.models import ModelFamily

from agentopera.engine.function_call import FunctionTool
from agentopera.utils.streaming_utils import stream_chunks_and_publish
from ...utils.tools.onchain_meme_trending_tool import fetch_onchain_trending


from ...utils.logger import logger


[docs] class OnchainTrendAgent(RoutedAgent): """A specialized agent for conducting onchain trend analysis via an external API.""" def __init__(self, name: str) -> None: super().__init__("Onchain Trend Agent for onchain trend analysis") self.name = name """init the agent instance""" # Initialize the model client self.model_name = "Qwen2.5-72B-Instruct" model_info: ModelInfo = {"vision": False, "function_calling": True, "json_output": False, "family": ModelFamily.UNKNOWN} model_client = OpenAIChatCompletionClient( base_url=os.getenv("TENSOROPERA_API_GATEWAY"), api_key=os.environ['LLM_GATEWAY_KEY'], model_info=model_info, model=self.model_name, temperature=0.6, top_p=0.95, ) trend_data_tool = FunctionTool(fetch_onchain_trending, description="Get sorted onchain data from CoinGecko") self.agent = AssistantAgent( name="onchain_trend_agent", model_client=model_client, system_message="You are a financial assistant specialized in cryptocurrency market analysis.\ You are limited to recommending **at most 20 coins**. If the user asks for more than 20, you must **only return 20 coins** and clearly state:\ **“I only care about the top 20 coins for quality and relevance.”**\ You must use the `fetch_onchain_trending` tool with the following parameter:\ - `number_of_coins` (str): the number of cryptocurrencies to recommend. Must be between 1 and 20.\ Recommendation rules:\ - If the user asks for coin recommendations **without specifying a number**, set `number_of_coins = '10'`.\ - If the user asks for **more than 20**, set `number_of_coins = '20'` and return only 20 coins. Be sure to include this note:\ When presenting results:\ - Start with: **“Here are {number_of_coins} coins with their descriptions:”**\ - Only include each coin's **Name** and write a short description for each coin.\ - **Do NOT include any other information** such as price, market cap, volume, or rankings.\ - Format the output as a clean, organized list using plain language in **native language**, in one or more natural paragraphs.\ - Always use the tool result to generate your response.\ - If the tool returns fewer coins than requested, just return what's available without explanation.", model_client_stream=True, # Enable streaming tokens from the model client. tools=[trend_data_tool], reflect_on_tool_use=True ) # for user role, each user has a unique chat agent instance logger.info(f"OnchainTrendAgent initialized. agent id = {self.id}")
[docs] @message_handler async def my_message_handler(self, message: TextMessage, ctx: MessageContext) -> None: """Handles messages, performing deep research and streaming responses.""" assert ctx.message_channel is not None logger.info(f"OnchainTrendAgent received messages. model name = {self.model_name}") messages = [message] # Ensure we at least process the latest message session_id = message.metadata.get("session_id") if not session_id: raise ValueError("Message metadata is missing `session_id` field") await stream_chunks_and_publish(self.agent, ctx, messages, self.publish_message, self.name, session_id, self.cancel_token)