models.ollama
- class agentopera.models.ollama.OllamaChatCompletionClient(**kwargs: Unpack)[source]
Bases:
BaseOllamaChatCompletionClient
Chat completion client for Ollama hosted models.
Ollama must be installed and the appropriate model pulled.
- Parameters:
model (str) – Which Ollama model to use.
host (optional, str) – Model host url.
response_format (optional, pydantic.BaseModel) – The format of the response. If provided, the response will be parsed into this format as json.
options (optional, Mapping[str, Any] | Options) – Additional options to pass to the Ollama client.
model_info (optional, ModelInfo) – The capabilities of the model. Required if the model is not listed in the ollama model info.
Note
Only models with 200k+ downloads (as of Jan 21, 2025), + phi4, deepseek-r1 have pre-defined model infos. See this file for the full list. An entry for one model encompases all parameter variants of that model.
To use this client, you must install the ollama extension:
pip install "agentopera[ollama]"
The following code snippet shows how to use the client with an Ollama model:
from agentopera.models.ollama import OllamaChatCompletionClient from agentopera.core.types.models import UserMessage ollama_client = OllamaChatCompletionClient( model="llama3", ) result = await ollama_client.create([UserMessage(content="What is the capital of France?", source="user")]) # type: ignore print(result)
To load the client from a configuration, you can use the load_component method:
from agentopera.core.types.models import ChatCompletionClient config = { "provider": "OllamaChatCompletionClient", "config": {"model": "llama3"}, } client = ChatCompletionClient.load_component(config)
To output structured data, you can use the response_format argument:
from agentopera.models.ollama import OllamaChatCompletionClient from agentopera.core.types.models import UserMessage from pydantic import BaseModel class StructuredOutput(BaseModel): first_name: str last_name: str ollama_client = OllamaChatCompletionClient( model="llama3", response_format=StructuredOutput, ) result = await ollama_client.create([UserMessage(content="Who was the first man on the moon?", source="user")]) # type: ignore print(result)
Note
Tool usage in ollama is stricter than in its OpenAI counterparts. While OpenAI accepts a map of [str, Any], Ollama requires a map of [str, Property] where Property is a typed object containing
type
anddescription
fields. Therefore, only the keystype
anddescription
will be converted from the properties blob in the tool schema.To view the full list of available configuration options, see the
OllamaClientConfigurationConfigModel
class.- component_type = 'model'
- component_config_schema
- component_provider_override = 'agentopera.agents.models.ollama.OllamaChatCompletionClient'
- class agentopera.models.ollama.BaseOllamaClientConfigurationConfigModel(*, model: str, host: str | None = None, response_format: Any = None, follow_redirects: bool = True, timeout: Any = None, headers: Mapping[str, str] | None = None, model_capabilities: ModelCapabilities | None = None, model_info: ModelInfo | None = None, options: Mapping[str, Any] | Options | None = None)[source]
Bases:
CreateArgumentsConfigModel
- follow_redirects: bool
- timeout: Any
- headers: Mapping[str, str] | None
- model_capabilities: ModelCapabilities | None
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- options: Mapping[str, Any] | Options | None
- class agentopera.models.ollama.CreateArgumentsConfigModel(*, model: str, host: str | None = None, response_format: Any = None)[source]
Bases:
BaseModel
- model: str
- host: str | None
- response_format: Any
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].