Source code for agentopera.router.workers.market_agent

import os
from typing import Any, Dict, List

import pandas as pd
from agentopera.engine.types.msg_context import MessageContext
from agentopera.engine.agent import message_handler
from agentopera.models.openai import OpenAIChatCompletionClient
from agentopera.chatflow.agents import AssistantAgent
from agentopera.chatflow.messages import TextMessage
from agentopera.engine.agent.routed_agent import RoutedAgent
from agentopera.engine.types.models import ModelInfo
from agentopera.engine.types.models import ModelFamily
import yfinance as yf

from agentopera.engine.function_call import FunctionTool
from agentopera.utils.streaming_utils import stream_chunks_and_publish


from ...utils.logger import logger


[docs] class CryptoMarketAgent(RoutedAgent): """A specialized agent for conducting historical market data via an external API.""" def __init__(self, name: str) -> None: super().__init__("Crypto Market Agent for historical market data") self.name = name """init the agent instance""" # Initialize the model client self.model_name = "Qwen2.5-72B-Instruct" model_info: ModelInfo = {"vision": False, "function_calling": True, "json_output": False, "family": ModelFamily.UNKNOWN} model_client = OpenAIChatCompletionClient( base_url=os.getenv("TENSOROPERA_API_GATEWAY"), api_key=os.environ['LLM_GATEWAY_KEY'], model_info=model_info, model=self.model_name, temperature=0.6, top_p=0.95, ) trend_data_tool = FunctionTool(self.get_market_data, description="Get market cap and historical market data for a given symbol") self.agent = AssistantAgent( name="market_agent", model_client=model_client, system_message="Given a cryptocurrency name, retrieve its corresponding stock symbol from Yahoo Finance (DEFAULT to USD if not specified).\ such as: bitcoin is BTC-USD, ethereum is ETH-USD etc.\ You MUST use trend_data_tool to get the accurate market capacity and historical market data for the given symbol. \ But do not tell the user the tool name and the data source. \ just answer here is the related information you can get from the tool.\ You can use latex formtting:\ - Use $ for inline equations\ - Use $$ for block equations\ - Use 'USD' for currency (not $)\ - No need to use bold or italic formatting in tables.\ - Don't use the h1 heading in the markdown response.", model_client_stream=True, # Enable streaming tokens from the model client. tools=[trend_data_tool], reflect_on_tool_use=True ) # for user role, each user has a unique chat agent instance logger.info(f"MarketAgent initialized. agent id = {self.id}")
[docs] async def get_market_data(self, stock_ticket_symbol: str) -> List[Dict[str, Any]]: """ Get market data for a given symbol. Args: stock_ticket_symbol (str): The stock ticker symbol to fetch data for. Returns: List[Dict[str, Any]]: - Dict with market cap - Dict of historical data, where each key is a range and each value is a list of {timestamp, price} """ ticker = yf.Ticker(stock_ticket_symbol) market_cap = {"market capacity": ticker.info.get("marketCap")} def format_series(series: pd.Series) -> List[Dict[str, Any]]: df = series.reset_index() df.columns = ['timestamp', 'price'] df['timestamp'] = df['timestamp'].astype(str) return df.to_dict(orient='records') hist_data = { "hist_1d": format_series(yf.download(tickers=stock_ticket_symbol, period="1d", interval="1m")['Close']), "hist_5d": format_series(yf.download(tickers=stock_ticket_symbol, period="5d", interval="30m")['Close']), "hist_1mo": format_series(yf.download(tickers=stock_ticket_symbol, period="1mo", interval="1d")['Close']), "hist_6mo": format_series(yf.download(tickers=stock_ticket_symbol, period="6mo", interval="1d")['Close']), "hist_1y": format_series(yf.download(tickers=stock_ticket_symbol, period="1y", interval="1d")['Close']), "hist_ytd": format_series(yf.download(tickers=stock_ticket_symbol, period="ytd", interval="1wk")['Close']), "hist_max": format_series(yf.download(tickers=stock_ticket_symbol, period="max", interval="1mo")['Close']), } return [market_cap, hist_data]
[docs] @message_handler async def my_message_handler(self, message: TextMessage, ctx: MessageContext) -> None: """Handles messages, performing deep research and streaming responses.""" assert ctx.message_channel is not None logger.info(f"MarketAgent received messages. model name = {self.model_name}") messages = [message] # Ensure we at least process the latest message session_id = message.metadata.get("session_id") if not session_id: raise ValueError("Message metadata is missing `session_id` field") await stream_chunks_and_publish(self.agent, ctx, messages, self.publish_message, self.name, session_id, self.cancel_token)